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To design catalysts and optimize reactive systems, a kinetic model of the catalytic reaction is needed. However, the traditional 
manual construction of kinetic models if of trial-and-error nature and demands from the researcher a high degree of expertise 
in kinetics and catalysis, thus creating a bottleneck. This can be mitigated by automating the construction of kinetic models. 
Therefore, the goal of this work was to develop a software tool that automatically proposes rate equations for a catalytic 
reaction based on kinetic experimental data. This proposal is based on the similarity between the features of the experimental 
data and those predicted by theoretical initial rate equations. These equations were deduced with some assumptions from 
typical mechanisms in heterogeneous catalysis, and are present in a library, from which the tool generates theoretical curves 
of initial rate as a function of pressure curves. Afterwards, the tool compares the features of these curves to the features of the  
data, thus screening the rate equations to eliminate those that cannot be a model of the data. Afterwards, the possible models 
are ranked based on feature similarity. Selected literature datasets were processed to test the tool, with it successfully being 
able to deduce the same rate equations that the researchers proposed in most cases. Therefore, the tool fulfils its goal, although 
its applicability is limited by analysing only initial rates and by the assumptions used to develop the library. Even with its 
limitations, this is an important first step in the automation of kinetic modelling applied to heterogeneous catalysis that, once 
fully generalized, will enable a larger number of researchers to achieve kinetic models for catalytic reactions in less time.

1. Introduction  

Catalysts are essential to the sustainability of several industries since 

they offer a more energetically favourable pathway for chemical 

reactions to occur[1]. Therefore, the research for new catalysts is of 

major importance. 

In heterogeneous catalysis, the physical state of the catalyst, i.e. 

solid, is different from the one of the reactants and products, i.e. gas 

or liquid. Here, the transformation of reactants into products takes 

place on the surface of the catalyst. For that to happen, the reactant 

molecules must adsorb onto the active sites present on surface and 

convert into products, which must then desorb. Each of these 

elementary steps is influenced by different factors[2], thus 

potentially occurring at different rates, determining the overall 

reaction rate. The net production rate of the species involved in the 

reaction can be written as a function of the rates of the elementary 

steps. 

To optimize a reactive process, it is necessary to control the reaction 

rate. That, in turn, requires knowledge on how the rate varies with 

reaction conditions. For that it is necessary to have a kinetic model, 

which is a mathematical model that describes the influence of 

reaction conditions and of the catalyst on the reaction rate[3]. 

The first step in kinetic modelling is to propose a mechanism for the 

reaction. Traditionally, this is done by extracting kinetic data of the 

reaction in question from experiments and then do a qualitative 

analysis of said data[4]. This analysis is performed by an 

experienced researcher that observes the trends in the experimental 

data and based on kinetic and catalytic knowledge proposes the 

models that are possible explanations for the behaviour of the 

experimental data. Then, it is necessary to solve the mass balances 

of the species involved in the reaction. There are different ways to 

do so, depending on which assumptions are made[3]. A common one 

is the rate determining step (RDS) approximation, which assumes 

that one of the elementary steps in the mechanism determines the 

rate of the overall reaction, while the other steps are in quasi-

equilibrium[3]. This approximation ensures that an analytical 

solution is achieved. However, this solution cannot account for a 

shift in the RDS due to changing reaction conditions and neither for 

time dependent phenomena. 

This manual modelling process requires expertise on kinetics and 

catalysis from the researcher, which limits the number of researchers 

that can work on this field. Also, this is a trial-and-error process, 

since the researcher will derive a new rate equation until reaching 

one that can explain the data in a satisfactory way. This makes this 

process very time consuming. These factors create therefore a 

bottleneck in the kinetic modelling process. By automating it 

utilising a software tool, the bottleneck mentioned above would be 

mitigated. Since the process is being done by a software tool, the 

trial-and-error process would be performed much faster. Also, since 

the process is automated, the level of expertise on kinetics and 

catalysis the researcher is required to would be reduced, which 

means that more researchers would be able to work on kinetic 

modelling. 

Concerning kinetic modelling automation, most work found based 

their automation on computer simulations, utilizing different 

resources such as linear algebraic methods[5], graph theory[5]–[7], 

lumping strategies[3] and machine learning[8]. These methods have 

some advantages, such as reducing the need for performing catalytic 

experiments  to obtain new experimental data, and in some cases 

eliminating the need of experimental data. However, they also have 

their disadvantages, with the main one being that the theory on 

which the simulations are based is built on some assumptions, which 

can lead to incorrect models that are unrealistic. On the other hand, 

the automatic proposal of models based on experimental data results 

in proposing models that are more realistic, since they are based on 

real data, even if some assumptions are used. The disadvantage is 

that the performance of such a tool will strongly depend on the 

quality of the data itself (number of points, distribution of points, 

experimental noise, etc.). 

Focusing on automatic kinetic modelling tools based on 

experimental data, the tool TAM-C, developed by Schaich, King and 

Becker[9], [10], was found. This tool generates a curve that fits the 

experimental data, recognizes the “episodes” (features) of said curve 

and then eliminates the models that are qualitatively dissimilar to the 
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data, reducing the number of possible models to be fitted to the 

experimental data. However, the type of data analysed by TAM-C 

consists of timeseries of calorific data, which is different from the 

data necessary to propose a kinetic model, especially when it comes 

to the number of points[11]. 

In summary, to tool was found in the literature designed specifically 

for kinetic data of catalytic reactions. 

Therefore, the goal of this work is to develop a tool that 

automatically proposes rate equations for catalytic reactions based 

on experimental kinetic data and on the screening of rate equations. 

This screening will be done by comparing the features of the 

experimental data with those theoretically predicted by different rate 

equations, since different rate equations result in rate curves with 

different features. This approach requires a way of automatically 

recognizing the features of datasets, as well as a library of typical 

rate equations for catalytic reactions from which to generate the 

theoretical curves. The algorithm developed by Siradze[12] can 

generate a curve which follows the data trends and is chemically 

realistic and then extract its features, much like an experienced 

researcher would do, so it fulfils the former requirement. For the 

library of rate equations to be developed, the equations themselves 

must be deduced from typical catalytic mechanisms. Some of these 

mechanisms can be found in the work developed by Yang and 

Hougen[13]. The rate equations will be deduced assuming initial 

rates of reaction (i.e., no products present), since rate equations 

deduced this way generate curves which features are more easily 

recognizable. 

2. Concept of rate equation proposal tool  

To develop a tool capable of automatically proposing rate equations 

that can describe an experimental kinetic dataset, a feature 

recognition approach was followed. The concept behind this is that 

different rate equations produce curves with different features and 

the tool will propose the equations that result in curves with features 

similar enough to the features of the kinetic data. This proposal 

should be based on the elimination of rate equations that cannot 

generate curves with features similar to the features of the data. the 

conceptual flowchart of this tool is presented in Figure 1. 

 
Figure 1 - Conceptual flowchart of the tool (trapezoid – user input; rectangle 
– process; oval – information included in tool; rounded rectangle – output 

of tool) 

The process of the tool can be divided into three parts. In the 

experimental branch (1), the features of the experimental kinetic data 

are extracted. In the theoretical branch (2), theoretical curves are 

generated from the rate equations in the library and their features are 

extracted. The third and most downstream part of the tool is the 

comparison section(3), where the features of the theoretical curves 

are compared to the feature of the experimental data and the 

elimination of initial rate equations that cannot describe the data is 

done. Of these three parts, most of the development was directed to 

the theoretical branch and the comparison section, since the feature 

extraction algorithm was already developed by S. Siradze[12] and 

this is the only element necessary for this branch, apart from some 

data treatment prior to the feature extraction. 

The concept of the tool relies on curve features. Therefore, the tool 

must contain an algorithm that can extract the features of the curves 

in a way that they can be compared. The adopted algorithm was the 

one developed by Siradze[12]. This algorithm automatically 

performs the qualitative analysis method proposed by Janusz and 

Venkatasubramanian[14]. First it draws a curve that follows the data 

trends. Then it splits that curve into several primitives, which are 

sections of the curve differentiated by the signs of the first and 

second derivatives. The possible primitives are present in Figure 2. 

 
Figure 2 - Considered primitives for the feature extraction algorithm[12] 

(signs of first and second derivatives in brackets, respectively) 

The relevant features extracted by this algorithm are the primitives 

themselves and the x-values at the extremes of the primitives, i.e., 

the borders of the primitives. These features are graphically 

represented in Figure 3. After extracting the features, the algorithm 

checks whether they represent a chemically realistic curve. If not, a 

new curve is redrawn. This way, the actions that would be performed 

by an experienced researcher in the field are mimicked. 

 
Figure 3 - Graphical representation of curve features 

3. Theoretical branch of the tool 

3.1. Construction of the library 
As mentioned before, the theoretical branch of the tool is responsible 

for generating the theoretical curves predicted from the rate 

equations in the library. Therefore, the first step in the development 

of this branch is the development of a library of rate equations. The  

library must be applicable to the majority of catalytic reactions and 

must be complete, i.e., the rate equations in it must consider all 

possibilities within the assumptions used to deduce them. Another 

characteristic is that the rate equations should be deduced assuming 

initial rates of reaction (no products present in the system). This is 

because the curves resulting from such equations are more easily 

recognizable. 

To ensure that both requirements of the library are met, it is 

necessary to deduce the rate equations from a complete set of 

common and reaction mechanisms in heterogeneous catalysis. A 

good source of  these mechanisms is the work of Yang and 

Hougen[13] where they studied the effects of total pressure on the 

initial rates of catalysed gaseous reactions with different rate 

equations. These rate equations and corresponding mechanisms 

account for all possibilities regarding the adsorption of reactants and 

RDS. Therefore, this work is a good source for developing the 

library of the tool. However, the rate equations present in this work 
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cannot be directly implemented in the tool since some of the 

assumptions made to deduce them greatly reduce its applicability, 

such as the assumption that only one molecule of each species is 

involved in the reaction and that the reactor feed is composed of only 

the reactants in stoichiometric proportions. 

To overcome the limitations of the work of Yang and Hougen, the 

generic rate equations were deduced from the mechanisms studied 

in that work for generic stoichiometric coefficients and generic 

molar fractions of reactants, allowing for the presence of one 

reactant in excess, as well as the presence of inert species. They were 

deduced for initial rates through the RDS assumption since it is valid 

for most catalytic reactions[2]. These generic rate equations are 

present in Table 1, derived for two reactants (the number of products 

is irrelevant except when explicitly stated). To arrive to the 

equations for only 1 reactant (reactant A) all that is necessary is for 

the parameters relative to reactant B (y
B

 and b) to be 0 and to take 

into account that the equations that assume that the adsorption of B 

is the RDS or that A or B do not adsorb are irrelevant, since it would 

either be paradoxical or redundant, respectively. The stoichiometric 

coefficients of the species A, B, R and S are present in these 

equations as parameters a, b, r and s, respectively, and the molar 

fraction of each reactant in y
A

 and y
B

. Regarding the descriptions of 

the mechanism, it is important to note that if the manner of 

adsorption of a species is not specified, then it means that that 

species adsorbs molecularly. 

While the deduced generic equations overcome some of the 

previously mentioned limitations, their applicability is still limited.  

Dealing only with initial rates, while making the resulting theoretical 

curves more easily recognizable, reduces the number of datasets that 

can be analysed by the tool. The generic rate equations also assume 

that one RDS and only one surface reaction step take place.  

However, these limitations are still valid for a wide variety of 

catalytic reactions. Other assumptions are that all products adsorb 

onto the catalyst, that all species adsorb competitively onto the same 

type of active site and that the maximum of two reactants and two 

products allowed. 

3.2. Generating theoretical curves 
From the generic initial rate equations, the library of the theoretical 

curves can be generated. For each curve several different values are 

required, as is schematically represented in Figure 4. These values 

are the stoichiometric coefficients of the species and the molar 

fractions of the reactants, which are both inputted by the user, and 

the equilibrium constant values, which come from a list of possible 

values for these constants. To obtain a curve it is also necessary to 

give some pressure values for which the initial rate values are 

calculated. 

 
Figure 4 - Origin of values used to generate theoretical curves 

All the generic initial rate equations of Table 1 fit the type of Eq. 1. 

 
𝑟0 =

𝑐1 ∙ 𝑃
𝑒1

(1 + 𝑐2 ∙ √𝑃 + 𝑐3 ∙ 𝑃 + 𝑐4 ∙ 𝑃
𝑒2 + 𝑐5 ∙ 𝑃

𝑒3)
𝑛 Eq. 1 

To generate the theoretical curves, the parameters c1, c2, c3, c4, c5, 

e1, e2, e3 and n are calculated using the reactant fractions, the 

stoichiometric coefficients and the equilibrium constants. The 

lumped kinetic constant k’ only scales the curve, having no influence 

on its features. Therefore, its value is not necessary to generate the 

theoretical curves. The way these parameters are calculated is 

different for each generic rate equation. The formulas used to 

calculate them depend on the descriptions of adsorption and RDS 

present in Table 1 in bold, which are associated to each rate equation 

in the code implementation of the library. When calculating them, 

 

Table 1 - Library of generic initial rate equations 

Adsorption 

RDS 

Adsorption (impact for ‘A 

does not adsorb’) of A 

controlling 

Adsorption of B 

controlling 

Desorption of R controlling (for 1 product) 

2 products: 𝑟0 =
𝑘′

𝐾𝑅
⁄  

Surface reaction controlling 

All species 

adsorb 

molecularly 

r0 =
k′ ∙ yA ∙ P

1 + KByB ∙ P
 r0 =

k′ ∙ yB ∙ P

1 + KAyA ∙ P
 r0 =

k′ ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r

1 + KR ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r + (KAyA + KByB) ∙ P

 
r0 =

k′ ∙ (KAyA)
a ∙ (KByB)

b ∙ Pa+b

(1 + (KAyA + KByB) ∙ P)
n  

n = max(a + b, r + s) 

A adsorbs 

dissociatively 
r0 =

k′ ∙ yA ∙ P

(1 + KByB ∙ P)
2 r0 =

k′ ∙ yB ∙ P

1 + √KAyA ∙ P
 r0 =

k′ ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r

1 + KR ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r + √KAyA ∙ P + KByB ∙ P

 
r0 =

k′ ∙ (KAyA)
a ∙ (KByB)

b ∙ Pa+b

(1 + √KAyA ∙ P + KByB ∙ P)
n 

n = max(2a + b, r + s) 

B does not 

adsorb 
r0 = k′ ∙ yA ∙ P - r0 =

k′ ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r

1 + KR ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r + KAyA ∙ P

 
r0 =

k′ ∙ (KAyA)
a ∙ yB

b ∙ Pa+b

(1 + KAyA ∙ P)
n  

n = max(a, r + s) 

A adsorbs 

dissociatively, 

B does not 

adsorb 

r0 = k′ ∙ yA ∙ P - r0 =
k′ ∙ √Kg ∙ yA

a ∙ yB
br
∙ P

a+b
r

1 + KR ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r +√KAyA ∙ P

 
r0 =

k′ ∙ (KAyA)
a ∙ yB

b ∙ Pa+b

(1 + √KAyA ∙ P)
n  

n = max(2a, r + s) 

A does not 

adsorb 
r0 =

k′ ∙ KByB ∙ yA
a
b ∙ P1+

a
b

1 + KByB ∙ P
 r0 = k′ ∙ yB ∙ P r0 =

k′ ∙ √Kg ∙ yA
a ∙ yB

br
∙ P

a+b
r

1 + KAKByB ∙ √yA
ab ∙ P1+

a
b + KR ∙ √Kg ∙ yA

a ∙ yB
br
∙ P

a+b
r + KByB ∙ P

 - 

Uncatalyzed 

reaction 
r0 = k′ ∙ yA

a ∙ yB
b ∙ Pa+b 
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any equation with a n value larger than 3 is automatically eliminated. 

This is because the value of n is the number of active sites in the 

RDS, and having it larger than 3 is unrealistic[15]. The pressure 

values used to generate the curves are the same as the ones present 

in the experimental data. The reasons for this are related to the 

comparison between experimental and theoretical features and will 

be discussed further ahead. 

With the molar fractions of reactants and the stoichiometry coming 

from user input and the pressure values coming from experimental 

data, the only unknown parameters are the equilibrium constants 

KEq. These constants can have any value inside a chemically realistic 

range. So, the approach chosen was to generate several different 

curves for each equation by permutating between some possible 

values for these constants. These values were chosen so they cover 

an adequate range, determined by analysing some examples[16], and 

generate as many curve features as can be generated from each 

generic rate equation. A distinction was made between the 

adsorption constants Ki and the surface reaction equilibrium 

constant Kr. While the adsorption constants were considered to only 

have non-negligible values to represent a meaningful adsorption, K 

was considered able to have any value, even ones too small to be 

considered for adsorption constants. Therefore, two lists of KEq 

values were put in use, one for each of the previously mentioned 

cases. In addition to this, a reduced version of each of these two lists 

was also developed, to be used whenever the number of theoretical 

curves to be generated is too large (at the request of the user), in an 

effort to limit the runtime of the tool. The four lists of KEq values are 

present in Table 2. 

Table 2 - Lists of possible values for the equilibrium constants 

 List 

 
Ki  (pressure units-1) 

Full 

Ki  (pressure units-1) 

Reduced 

Kr 

Full 

Kr 

Reduced 

V
a

lu
e
s 

0.1 0.1 1E-7 1E-7 

0.3 0.5 0.01 0.01 

0.5 1 0.1 0.1 

0.7 10 0.3 0.5 

1 100 0.5 1 

10 - 0.7 10 

100 - 1 100 

- - 10 - 

- - 100 - 

 

It was decided that the full lists of KEq values must have more values 

in the range of 0.1 to 1 than from 1 to 100, as it can be seen in Table 

2. This is because the features of the curve are affected by the 

denominator parameters of the rate equation (c2, c3, c4 and c5 in Eq. 

1), calculated using the equilibrium constants, and the features 

change more drastically for a variation of small parameter values 

than for the same variation on larger parameter values. Even if it is 

theoretically possible, due to the limited KEq values, for some 

possible features of a rate equation to not be represented by any 

generated theoretical curve, this approach of using more small 

values than larger ones turns that possibility into an edge case. All 

the algorithms of the theoretical branch described in this chapter are 

summarized in Figure 5. 

4. Feature comparison and proposal algorithm 

The theoretical branch of the tool generates theoretical curves from 

each generic rate equation of the library. These curves can then be 

compared with the experimental data to screen the rate equations and 

eliminate those that cannot be a possible model that describes the 

data. More precisely, the features of the theoretical curves are 

compared with the features of the experimental data. Therefore, the 

sets of features must be extracted in a way that guarantees that the 

results of the comparison are trustworthy. 

 

 
Figure 5 - Flowchart of theoretical branch of the tool (trapezoid – user input; 
rectangle – process; oval – information included in tool; rounded rectangle 

– output of theoretical branch) 

 

4.1. Validity of feature comparison  
As the feature extraction algorithm was mainly developed for other 

type of data[12], preliminary testing showed that some 

implementations on both branches were needed to ensure the 

comparison between the features in experimental data and in 

theoretical curves is valid. The first issue is related to the influence 

of the x-values of the dataset on the recognized features. An example 

of this is given in Figure 6, where two datasets and their recognized 

features are represented. Both datasets follow Eq. 2, but the x-values 

of their points are different (all between 1 and 10, however). 

 𝑦 =
𝑥

(1 + 0.2 ∙ 𝑥)2
 Eq. 2 

 
Figure 6 - Comparison of features extracted from two datasets that follow 

Eq. 2 for different x-values 

As can be seen in Eq. 2, the recognized features of the datasets are 

different. This is a result of the different distribution of points along 

the x-axis. Therefore, to ensure that the experimental data and 

theoretical curves with the similar trends have similar recognized 

features, the pressure values used to generate the latter are the same 

present in the experimental data, as mentioned before. 

Another issue is that, on some occasions, the scaling of the dataset 

can affect its recognized features. This is due to the numerical 

methods on which this algorithm is based. An example of this is 

present in Figure 7, where two datasets and their respective features 

are represented. Both datasets follow Eq. 3 for the same x-values, 

varying only k, which does not affect the shape of the curve, scaling 

it only. 

 𝑦 =
𝑘 ∙ 𝑥

(1 + 2.75 ∙ 𝑥)2
 Eq. 3 
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Figure 7 - Extracted features of the same curve at two different scales 

As it can be seen in Figure 7, the recognized features are not the 

same, even though the datasets have the same trends, only different 

scales. To prevent this from happening between the experimental 

data and a theoretical curve, it was decided to normalize all datasets 

(from both experimental data and theoretical curves) prior to the 

feature extraction, dividing all rate values of the dataset by its 

maximum, according to Eq. 4. 

 �̂�0(𝑖) =
𝑟0(𝑖)

𝑚𝑎𝑥(𝑟0)
 Eq. 4 

This way, the normalized values will be within the range from 0 to 

1, avoiding this issue all together. 

4.2. Comparison section 
With these issues resolved, the theoretical curves can now be 

reliably compared to the experimental data based on their features. 

This is done through two tests, represented in Figure 8, which are 

done to every theoretical curve generated by every rate equation in 

the library. 

As part of the first test the primitives are compared since they 

represent the trends of their respective datasets. If a theoretical curve 

does not have the same features as the experimental data, then it does 

not have similar features at all. If it does have the same primitives, 

then this curve moves on to the second test, where the tool verifies 

if the pressure of each extremes of the theoretical curve is within a 

tolerated range around the pressure of the corresponding 

experimental extreme. This is done by calculating the relative error 

of the pressure of the theoretical extreme relatively to the 

experimental one, according to Eq. 5, and then checking if this error 

is smaller than the tolerance value, which is given by the user. 

 
𝛿 =

|𝑃𝑇ℎ𝑒𝑜𝑟 − 𝑃𝐸𝑥𝑝|

𝑃𝐸𝑥𝑝
 Eq. 5 

This comparison is done for all extremes of the theoretical curve 

(except for the first and last ones, whose pressure values are those of 

the first and last points of the curve, respectively, and will always be 

the same as the corresponding experimental extremes by definition). 

If this condition is verified for all extremes, then it is considered that 

the theoretical curve has similar features to the experimental data. 

These comparison tests are performed for every generated 

theoretical curve. In the end, every rate equation that generates at 

least one curve that passes the tests is proposed as a possible model. 

4.3. Ranking of models 
Each proposed rate equation can generate multiple curves that pass 

the comparison tests. Therefore, it is necessary to choose the best 

curve generated by each equation. This requires some ranking 

criteria that reflect how similar the features of a curve are to the 

experimental features. The chosen criterion was the sum of relative 

errors (SRE) of all the extremes of the theoretical curve calculated 

through Eq. 5. For differentiate between two theoretical curves with 

the same SRE, the mean squared error (MSE) was chosen as a 

secondary criterion. Since at this point the theoretical curves are still 

normalized, this criterion is calculated by Eq. 6. 

 
𝑀𝑆𝐸𝑛𝑜𝑟𝑚 =

∑ (�̂�0,𝑇ℎ𝑒𝑜𝑟(𝑖) − �̂�0,𝐸𝑥𝑝(𝑖))
2

𝑁
𝑖=1

𝑁
 Eq. 6 

With these criterions, the best curve generated by each proposed rate 

equation is chosen. 

 

 
Figure 8 – Flowchart of the comparison algorithm (trapezoid – user input; 
rectangle – process; oval – output of previous branches; rhombus – 

decision; rounded rectangle – terminator) 

4.4. Estimating k’ 
The objective of this tool is not only to propose rate equations for 

experimental data but also to propose some initial values for their 

parameters for an eventual regression. While these initial values 

were already determined for the equilibrium constants (from the lists 

of KEq values in Table 2), no initial value was proposed for the 

lumped kinetic constant k’. Therefore, this value is estimated for the 

best curves of each proposed rate equation. This is done by 

calculating the k’ values necessary for the curve to intersect each 

point of the experimental data and the MSE of each resulting curve, 

according to Eq. 7. The average of these k’ values is also calculated, 

as is the MSE of the curve with that value for k’. The chosen value 

for the initial guess for k’ is the one that generates the curve with the 

lowest MSE. While this method is rudimentary, no fitting of the 

equilibrium constants was performed, so fitting this value to the 

experimental data would be of no use.  

 
𝑀𝑆𝐸 =

∑ (𝑟0,𝑇ℎ𝑒𝑜𝑟(𝑖) − 𝑟0,𝐸𝑥𝑝(𝑖))
2

𝑁
𝑖=1

𝑁
 Eq. 7 

With the initial rate equations to be proposed determined, as well as 

the initial guesses for their parameters, it is necessary to rank them. 

The ranking criterion to do so is once again the SRE. The secondary 

criterion to differentiate between rate equations with the same SRE 

is the MSE, more specifically the one associated to the best initial 

guess for k’, calculated through Eq. 7. 

4.5. Output of tool 
Once the proposed initial rate equations are ranked, the output of the 

tool is completed. First, a graphical representation of the 

experimental data and its recognized features appears, similar to that 

of Figure 3. Then, for each proposed initial rate equation and in 

ranking order, a graphical representation of its best curve and of the 

experimental data appears (Figure 9), accompanied by some text 

output containing the rate equation itself and the parameter values of 
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its best curve (Figure 10). In the end, a table with a summary of the 

output appears. 

 
Figure 9 - Example of output graph with theoretical curve of proposed rate 

equation 

 
Figure 10 - Example of output text string 

Once the output is presented, the user can choose to run the 

comparison and proposal algorithm again for a different tolerance 

value. 

A flowchart describing in more detail the steps taken by the tool 

from start to finish is represented in Figure 11.  

5. Case study 

After developing the tool, some case studies were performed. One 

of them was on ethanol dehydrogenation, which has its global 

reaction present in Eq. 8. 

 
𝐸𝑡𝑂𝐻 ⇄ 𝐶𝐻3𝐶𝐻𝑂 + 𝐻2 Eq. 8 

The analysed dataset was obtained from the work of Franckaerts and 

Froment[17]. While there were six datasets of this reactions, 

extracted for different temperatures, only the one extracted at 275 

°C will be discussed here. A graphical representation of that dataset 

is present in Figure 12. 

This dataset was extracted for a feed composed, in molar fractions, 

of 0.865 of EtOH and 0.135 of water, which acts as an inert 

component. The rate equation determined by the researchers is 

present as Eq. 9. The values determined for k’ and KEtOH were 4.03 

mol∙h
-1

∙g-1 and 0.40 atm-1, respectively. 

 
𝑟0 =

𝑘′ ∙ 𝐾𝐸𝑡𝑂𝐻 ∙ 𝑃𝐸𝑡𝑂𝐻
(1 + 𝐾𝐸𝑡𝑂𝐻 ∙ 𝑃𝐸𝑡𝑂𝐻)

2
 Eq. 9 

Eq. 9 corresponds to the rate equation present in the library (Table 

1) that assumes that all species adsorb molecularly and the RDS is 

the surface reaction. Therefore, if the tool works properly, this rate 

equation should be among the proposed ones. 

This dataset was analysed by the tool, for a tolerance value of 0.5. 

The full runtime, including the time necessary for all the user input, 

was approximately 4 minutes. The features recognized from the 

experimental data are present in Figure 13. 

For this dataset, only one rate equation was proposed, which 

precisely corresponds to the one determined by the researchers. This 

is because from all the tested rate equations (taking into account that 

only one reactant is involved in the reaction), only this one generated 

a curve with the same primitives as the experimental data. This rate 

equation is present as Eq. 10.

 
Figure 11 - Full flowchart of the tool (trapezoid – user input; rectangle – process; oval - information included in tool; rounded rectangle – output of tool) 

Rate equation: 

 

      k'*(KA*yA)^2*P^2 

r = --------------------------------- 

      (1 + KA*yA*P)^2 

 

A = C3H6 

 
Specific constants of this theoretical curve 
(Units coincide with pressure and rate units): 

 

k' = 9.102e+00 

KA = 3.000e-01 

 

Ranking criteria: 

 

SRE = 2.140e-02 

MSE = 2.089e-01 
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Figure 12 - 275 °C ethanol dehydrogenation experimental dataset[17], 

indicated by arrow (markers – experimental points; solid line – model 

fitting). Adapted with permission from [17]. Copyright 1964 Published by 

Elsevier Ltd. 

 
Figure 13 - Recognized features of the 275 °C ethanol dehydrogenation 

dataset 

 
𝑟0 =

𝑘′ ∙ 𝐾𝐴 ∙ 𝑦𝐴 ∙ 𝑃

(1 + 𝐾𝐴 ∙ 𝑦𝐴 ∙ 𝑃)
2
 Eq. 10 

The k’ and KA values proposed by the tool for Eq. 10 are 4.2 

mol∙h
-1

∙g-1 and 0.50 atm-1, respectively, while the ranking criteria 

SRE and MSE had the values 0.312 and 4.31E-3, respectively. The 

constant values proposed by the researchers and the tool are again 

present in Table 3. 

Table 3 - Constant values proposed by the researchers and the tool 

 k' (mol∙h-1∙g-1) KA (atm-1) 

Franckaerts and Froment[17] 4.03 0.40 

Tool 4.2 0.50 

 

Comparing the values proposed by the tool for k’ and KA (A = 

EtOH)  to the ones proposed by the researchers, it can be observed 

that they are very similar to each other. This is indication that the 

tool performed well. The corresponding curve is present in Figure 

14. 

Analysing the ranking criteria of this rate equation, it can be 

concluded that this rate equation is only proposed by the tool for this 

dataset for a tolerance value larger than 0.312 (since the curve only 

has one extreme from which to calculate the SRE). This is due to the 

fact that only a limited number of KEq values can be used to generate 

theoretical curves and also due to the fact that the KEtOH value 

associated with the experimental data is small, and as mentioned 

before, a variation on small KEq values has a greater effect on the 

features than the same variation on larger KEq values. Therefore, 

even though the value of KEtOH (KA) proposed by the tool is similar 

to the one proposed by the researchers, it is still different enough for 

the resulting curve to have features (more specifically the extremes) 

different enough from the experimental ones, preventing Eq. 10 

from being proposed for smaller tolerance values. 

 
Figure 14 - Best curve of rate equation proposed for the 275 °C ethanol 

dehydrogenation dataset 

As mentioned before, other case studies were performed to test the 

tool. These served to test several aspects of the tool, such as its 

generic performance, influence of the data characteristics 

(distribution of data points along the pressure axis, data variability, 

experimental noise and double points from repeated experiments) on 

the performance of the tool and the results of the analysis of dataset 

for which the determined rate equation is not present in the library 

of the tool. 

From these case studies, it was observed that the tool proposed the 

same rate equation that the researchers did for most cases. When it 

failed to do so, it was due to characteristics of the data, such as 

experimental noise, outliers, the lack of variability of the data and 

the absence of data points on pressure ranges. The case study of the 

ethanol dehydrogenation was specifically chosen to be presented in 

this article because this specific case study is a good example of the 

qualitative analysis of an experimental dataset serving to screen 

several different models in search of those that can explain the data, 

since for this case only one model was proposed. It also shows the 

influence of the chosen tolerance value on the proposed models, 

since the SRE value of the proposed rate equation was relatively 

high, when compared to other case studies, while still being an 

example of a successful performance of the tool 

6. Conclusions 

In this work a tool that automatically proposes initial rate equations 

for catalytic reactions based on experimental kinetic data was 

developed and tested. This tool contains a pre-defined library of rate 

equations, from which theoretical curves are generated. The 

proposal of rate equations results from the screening of the ones in 

the library, made by comparing the generated curves from each 

equation with the experimental data. This automatic process reduces 

the expertise level required from researchers, thus being the main 

achievement of the tool. Another achievement is that the tool can 

perform this process much faster than a human researcher would 

manually. These two achievements mean that the tool fulfils the 

objective of mitigating the bottleneck present in the kinetic 

modelling process. 

One of the advantages of the tool is the fact that its library of rate 

equations covers numerous possibilities for heterogeneous catalysis, 

within certain constraints. This comes from the fact that these 

equations were deduced from typical mechanisms for catalytic 

reactions and cover the different possibilities for both reactant 

adsorption and RDS. This way, the correct rate equation can be 

proposed to an acceptable number of experimental datasets. 
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However, this tool has its limitations. The main one is the fact that 

it can only deal with initial rates of reaction. This limits the 

applicability of the tool since it reduces the number of experimental 

datasets it can analyse.  

In future developments, the initial rates limitation can be surpassed 

by updating the library for it to be able to consider the presence of 

product. This could be done by re-deducing the rate equations 

without assuming the inexistence of products in the system. The 

fully developed version of the tool should ideally analyse datasets of 

rate as a function of variables other than total pressure, such as molar 

fraction of reactants. The resultant increase of obtained kinetic 

information would improve the screening of the models. 

The tool developed in this work is an important initial step for the 

automatization of the kinetic modelling process. Once fully 

developed and perfected, this tool will enable a larger number of 

researchers to achieve models for catalytic reactions in less time-

consuming manner. This way, the design of new catalysts will be 

enhanced, which will be vital to the sustainability of the chemical 

industry. 

Notations 

𝑎, 𝑏, 𝑟, 𝑠 – stoichiometric coefficients of species A, B, R and S, 

respectively 

𝛿 – relative error 

𝑘′ – lumped kinetic constant 

𝐾𝑟 – equilibrium constant of surface reaction step 

𝐾𝐸𝑞 – equilibrium constant 

𝐾𝑖 – adsorption constant of species i (pressure units-1, i=A, B, R, S) 

𝐾𝑔 – global equilibrium constant 

𝑀𝑆𝐸 – mean squared error 

𝑀𝑆𝐸𝑛𝑜𝑟𝑚 – mean squared error of normalized data 

𝑛 – exponent of rate equation denominator 

𝑁 – number of points in dataset 

𝑃 – pressure (pressure units) 

𝑃𝐸𝑥𝑝, 𝑃𝑇ℎ𝑒𝑜𝑟 – pressure values of extremes of experimental data and 

theoretical curve, respectively (pressure units) 

𝑟0 – initial rate of reaction (rate units) 

�̂�0 – normalized initial rate value 

𝑆𝑅𝐸 – sum of relative errors 

𝑦𝑖 – molar fraction of reactant i 
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